ADAO78087

COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND
£

RIS S s R " ; ..‘ -
[Thia dorw w B e Ny WA

for pubic e nd wale: e
distribution ¥ Ui

IR

7N\

R—————

P
e

’M-»'ch};rj_gg/ o DARFA Onder-32¢ ¢ \
ARCD 2! | e

SRR

e e

e

]

5 ¥ 4 .lﬂ' ‘l.“"','
hni a‘ f ., i

@%{wzwno @!.-«327 ~ [%M
e G

ama—"

(9 r]éc

University of Maryland
College Park, MD 20742

§ {1}
J

e Y&

udll/

ABSTRACT

This paper describes algorithms for computing geometric
properties of binary images represented as quadtrees. All
the algorithms involve a simple traversal of the tree. Each
algorithm, however, performs different operations at the nodes
of the tree. Algorithms are presented for finding the area,
centroid, union, intersection, and complement of binary images.
All the algorithms are linear in the number(s) of nodes in the
tree(s).

ﬁdu gment b rs heen OpTT
for public roloaee nd scle; !
distribution 0w LimaMaed. e

The support of the Defense Advanced Research Projects Agency
and the U.S. Army Night Vision Laboratory under Contract
DAAG-51-76C=-0138 (DARPA Order 3206) is gratefully acknowledged,
as is the help of Kathryn Riley in preparing this paper.

The paper has benefitted greatly from discussions with Chuck
Dyer, Azriel Rosenfeld, and Hanan Samet.

S Nes ol l 0L

1. Introduction

Shape representation is an important aspect of image
processing. It is useful to have a representation that allows
easy calculation of shape features and shape differences.
This paper presents several algorithms that operate on regions
represented by quadtrees [l]. 1In particular, a linear time
method of calculating the moments of a region is presented, as
well as algerithms for the operations of union, intersection,
and complementation of guadtrees.

It is assumed that the image is a square binary 27x2"
array composed of black and white points. The guadtree repre-
sentation of such an image is obtained by its successive sub-
division into quadrants. The root node of the tree represents
the whole image. If this is not all black or all white, it is
split into four quadrants, represented by four sons of the
root node. Again, each of these sons that does not represent
part of the image that is all white or all black is subdivided
into four sons. Eventually, this process terminates, at worst

with individual pixels as leaves in the tree.

g - I
| Accession for

—

| BTIS Ghaakl

| DDC TAB

| Unaaincunced

| Justitication _ |
ks SR RSN S
By
i

Pist (17 AN,
Jyvrd 1ity Codes

{land/or
special

2. Definitions

Each node in the gquadtree holds six pieces of information.
The first five are pointers to the node's father and to its
four sons. (The root node has no father, and leaf nodes have
no sons.) The sixth piece of information describes the node
itself. It has value BLACK if the region represented by the
node is all black, WHITE if it is all white, and GRAY other-
wise. GRAY nodes represent non-terminals in the guadtree,
while BLACK and WHITE nodes are leaf nodes.

The four sons of a node are labeled NW (northwest), NE
(northeast), SW (southwest), and SE (southeast). Notice that
if a node is of size 2"x2" (i.e., it corresponds to a region of
27x2" pixels in the image), its sons will each be of size
zn-lxzn-l.

The square array of pixels on which the gquadtree is defined
has the following coordinate system imposed on it.

The leftmost, topmost pixel is at the (0,0) coordinate.

The rightmost, bottommost pixel is at the (2"-1,2"-1) coor-
dinate. The coordinates (x,y) are such that the x-value in-
creases from l;ft to right (west to east), and the y coordinate

increases form top to bottom (north to south) in the image.

The particular coordinate system chosen is not crucial; this

one makes the calculations particularly easy.

3. The algorithms

All the algorithms to be presented here are based on a
very simple tree-traversal algorithm. In order to compute
moments, it is necessary to visit every BLACK leaf in the
tree and calculate some function on the basis of the distri-

butions of the leaves. For the set operations, comparisons

between the structure of two quadtrees require parallel tra-
versal of the trees.

Where the guadtree representation scores over alternative
array-based representations is in its ability tc process large H

blocks of the image at once, when these blocks form single

leaves in the quadtree. Samet [2]) has shown that the worst
case size of a quadtree 1s 4Bn, where B is the number of BLACK
nodes and the image is of size 2 by 2". The expected size
should be much smaller, so that substantial processing gains
may be achieved.

The tree traversal algorithm uses a form of pcsterder (3]. The
procedure .s to traverse the NW subtree, traverse the NE sub-
tree, traverse the SW subtree, traverse the SE subtree, and
then visit the node. It should be noted that the particular tra-
versal order chosen is not crucial for the set-theoretic algorithms.
Equivalent algorithms could be devised for the other orders.

Al: Area
This algorithm finds the area of an image represented by

a gquadtree, where area is defined as the total number of black

pixels in the image.
Input to the algorithm is a pointer to the root node of
a quadtree, and a number n denocting the log of the diameter

of the image (i.e., the image is of size 2"x2").

integer procedure AREA (QUADTREE,N):;

/* find the number of black pixels in an image of size
2N by 2x represented by a gquadtree */

begin
node QUADTREE;

integer BLACKAREA;

level N;

quadrant I;
BLACKAREA:=0;
if GRAY (QUADTREE) then
for I in (NW,NE,SW,SE} do
BLACKAREA : =BLACKAREA+

AREA (SON(QUADTREE, I) ,N=-1);

else if BLACK(QUADTREE) then
BLACKAREA : =BLACKAREA+2* (2*N):

return (BLACKAREA) ;

W
po }
{9

;

It can easily be seen that this algorithm vists every black
leaf cnce and only once, thus giving the ccrrect area.

Algorithms for finding higher moments are complicated

by the necessity of relating the position of a ncde in the
gquadtree to the coordinates of a region in the image. Each

gquadrant is specified by the coordinates of its top left

corner, and by its size. We give an algorithm for finding the

centroid of an image. The other moments are computed similarly.

A2: Centroid

The centroid of a binary image is a point (X,y) such that
X is the weighted average value of the x-coordinates of all
the black points of the image and y is the weighted average

of the y-coordinates of the black points. In other words, if

there are m black points in the image, (xl,yl)....,(xm.ym).
Ix. Ly,
Ce == o f i
the centroid is (x,Y) (—E_' - ;i

The centroid procedure is called with a pointer to the root
node of the gquadtree as the QUADTREE parameter. N is initially
equal to n, where the input image is size 2% by 2"; all the

other parameters have value 0.

procedure CENTROID (QUADTREE,N,XCOORD,YCOORD,X,Y,MASS,XCENT,YCENT) ;
/* calculate the centroid of QUADTREE for an image of size szZN.
XCOORD, YCOORD are the coordinates of the top
left corner of the tree,
X,Y are the coordinates of the centroid.
MASS is the number of points.
XCENT and YCENT are the centroid values, */
begin
node QUADTREE;
coord X,Y,XCOORD,YCOORD,X1,Yl,XCENT, YCENT;
level N
integer MASS,M,J,K.Ml;

guadrant I;
X:=0; Y:=0; MASS:=0;

if GRAY (QUADTREE) then
for (I1,J,K) in {(Nw,0,0),(NE,1,0),(SW,0,1),(SE,1,1)} do
begin
CENTROID (SON (QUADTREE, I) ,N-1,XCOORD+J*2+ (N-1),
YCOORD+K*2+ (N-1) ,X1,Y1,M1,XCENT, YCENT) ;
X:=X+X1;
Y:=Y+Y1l;
MASS :=MASS+M1;
end;

else if BLACK(QUADTREE) then

begin
X:=XCOORD+2* (N-1) ;
Y:=YCOORD+2+ (N-1) ;
MASS:=24 (N+1)
end;

if MASS=) then
begin
XCENT:=0;

YCENT:=0;
end;
XCENT:=X/MASS;
YCENT:=Y/MASS;
eng;

return;

end;

The main difference between the centroid and area algo-

rithms is in the calculation of the coordinates. This is a
simple process, and does not affect the rest of the algorithm.
It is easy to see, once again, that each BLACK leaf in the
tree is visited once and only once.

The other moments can be calculated in an analogous way.

Set Operations

It is often desired to compare two regions in an image and

to £ind what is common to them. This involves intersecting
the two regions and determining what points are common
to both of them. Other set operations that are useful are
complementation and union. The aigorithms for these operations
involve, once again, a tree traversal. However, in the union
and intersection algorithms, it may not be necessary to tra-
verse the whole tree. The union and intersection algorithms

. are special cases of the superposition algorithm of Hunter and

Steiglitz (4]. They are included because of their simplicity

and their similarity to the other algorithms. 1

Al:Complement

Constructing the complement of an image involves changing
black pixels into white, and white pixels or nodes to black.
This is a very simple operation in a quadtree, and does not

change the structure of the tree at all.

Input to the procedure is a pointer to the root of the

tree.

s

B Ay e

myrTY T . ———

procedure COMPLEMENT (QUADTREE) ;
/* change a quadtree into its complement */
begin
node QUADTREE;
guadrant I;
if GRAY (QUADTREE) then
for I in {NW,NE,SW,SE} do
COMPLEMENT (SON (QUADTREE, I))

else if BLACK(QUADTREE) then

TYPE (QUADTREE) :=WHITE;
else /* a WHITE node */
TYPE (QUADTREE) : =BLACK;

end;

Ad:Intersection

This procedure finds the logical AND of two binary images
represented by guadtrees. The algorithm involves traversing
the trees in parallel. When one tree has a son that is a BLACK
leaf, while the other has a corresponding son that is not
SLACK, the BLACK leaf is replaced by the corresponding subtree.
If one tree has a leaf that is WHITE, the intersection tree
will have a corresponding WHITE leaf. Finally, if both trees
have GRAY nocdes in corresponding positions, the nodes' sons
are examined recursively, using the same process.

Input to the procedure is a pointer to the rcot of each

tree.

et i S TN

guadtree procedure INTERSECTION(TREEl,TREE2);

/* returns the intersection of TREEl and TREEZ */
begin

node TREEL,TREE2, INTERSECT;

guadrant I;

if BLACK(TREEl) or WHITE(TREE2) then

return (COPY (TREE2)) ;

lse if BLACK(TREE2) or WHITE(TREEl) then

return (COPY (TREEL)) ;

INTERSECT:=CREATENODE(): /*create a root node */

for 1 in {NW,NE,SW,SE} do

begin
SON (INTERSECT,I) :=INTERSECTION (SON(TREE1l,I) ,SON(TREE2,I));
FATHER (SON (INTERSECT , I}) :=INTERSECT;
end;
return (INTERSECT) ;

end:

guadtree procedure COPY (TREE);

/* creates a tree structure identical to TREE */
begin
guadtree TREE ,NEWTREE;

guadrant I;
NEWTREE : =CREATENODE () ;

/* create a node with NULL FATHER, SON, and TYPE nodes */

TYPE (NEWTREE) :=TYPE (TREE) ;

for in {NW,NE,SW,SE,} do

e

if SON(TREE,I)=NULL then SON (NEWTREE,I) :=NULL;
else begin
SON (NEWTREE, I) : =COPY (SON(TREE, I));
FATHER (SON (NEWTREE, I)) : =NEWTREE;
end:
return (NEWTREE) ;

end:;

AS:Union

The union algorithm is very similar to the intersection
algorithm. The trees are again traversed in parallel, and
- decisions are made whenever either of the traversals reaches
a leaf. The decisicns are the mirror images of those in the
intersection algorithm: when a BLACK leaf is encountered, this
becomes the subtree at the current position in the union tree.
A WHITE leaf in one tree results in the corresponding subtree

of the other tree becoming the subtree at the current position

of the union tree. When there are two GRAY nodes, the proce-
dure is called recursively for the subtrees rooted at these
nodes.

Input to the algorithm is a pointer to the root node of

each tree.

guadtree procedure UNION(TREEl,TREE2);

/* construct the union of TREEl and TREE2 */
begin
node TREE1,TREE2,UNI;
guadrant I;
if BLACK(TREE2) or WHITE(TREEl) then
return (COPY (TREE2))
else if WHITE(TREE2) or BLACK(TREEl) then

return (COPY (TREELl))

UNI:=CREATENCDE(); /* create the root node */

for

in {NW,NE,SW,SE} do

Dy M

egin
SON (UNI,I) :=UNION(SON(TREEL,I),
SON (TREE2,1));
FATHER(SON(UNI, I)) :=UNI;
end:
return (UNI) ;

end:

Al dead T

Both the union and intersection algorithms can be gener-
alized to deal with an arbitrary number of trees. In all
cases, the intersection algorithm takes time proportional to
the traversal time of the smallest tree, and the union algo-
rithm takes time proportional to that of the second largest
tree. All the algorithms presented have times linear in the

sizes of the trees on which they operate.

References

(1]

(2]

(3]

(4]

A. Klinger and C. R. Dyer. Experiments in picture
representation using reqular decomposition. Computer
Graphics and Image Processing 5, 1976, 68-105.

H. Samet. Computing perimeters of images represented by
quadtrees. Computer Science TR-755, Jniversity of
Maryland, College Park, Maryland, Apr.l 1979.

D. E. Knuth. The Art of Computer Programming, Vol. l:
Fundamental Algorithms. Addison-Wesley, Reaging, Mass.,
1973.

G. M. Hunter and K. Steiglitz. Operaticns on images using

quadtrees. IEEE Trans. PAMI 1, 1979, 145-153.

e b 3t e e ik

= 7

R mw—
Unclassified
SECUMITY CLASSIFICATION OF Twis PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE o il i,

BEFORE COMPLETING FORM

REPORY NUMBER ": GOVY ACCESSION NO.| } RECIPIENT'S CATALOG NUMBER

}

gt

4

TITLE (and Sudtitle) $. TYPE OF REPCOART § PERIQD COVERED

LINEAR TIME CALCULATIONS OF GEOMETRIC Fechnlaal
PROPERTIES USING QUADTREES

6 PERFOAMING ORG. REPORT NUMBER

TR~770

?

AU TWOR(S) []
Michael Shneier

"CONTRACT O GRANT NUMBER/)

DAAG~53~76C-0138 7

PEAFORMING QQOAHIZA'IO'N NAME AND ADORESS 0 ::sgﬂ.A:O!~LKl:=:|'Y~:JI.‘().J.¢§‘?‘ TASK
Computer Science Centeyr
University of Maryland
College Park, MD 20742

{
11 CONTAROLLING OFFICE NAME AND ADDRESS [12 REPOAT DATE
U.S. Army Night Vision Laboratory ! May 1979
Fort Belvoir, VA 22060 " w-itsﬂ OF PAGES
TE MONITORING AGENCY NAME & ADDRESS I{ dillerent trom Controlling Otfice, | 'S SECURITY CLASS ‘of this report
| Unclassified

"Sa DEC.ASSIFICATION DOWNGRADING
SCHEDULE

‘s

DISTRIBUTION STATEMENT /of Al Report)

Approved for public release; distribution unlimited.

vy

DISTRIQUTION STATEMENT of the sbetract sarered in Block 20, i gifterent irom Report)

SUPP_EMENTARY NOTES

By WOADS Continge on reverse side { necessary and identily by block number)

Pattern recognition Centroid

Image processing Boolean operations
Moments Binary images
Area Quadtrees

¢ "
%@li’ll: T Continue on reverss sige |l necessary end (dentify Sy Block number

his paper describes algorithms for computing geometric proper=
ties of binary images represented as guadtrees. All the algo-
rithms involve a simple traversal of the tree. Each algorithm,
hocwever, performs different operations at the nodes of the tree.
Algorithms are presented for finding the area, centroid, union,
intersection, and complement of binary images. All the algorithmg

4

are linear in the number(s) cf nodes in the tree(s!. Itf\

0D

;:i:.u 1473 EO0ITION OF ! OV 48 (S QBSOLE"E 3 G ‘

SECUMITY CLASSIFICATION CF TWIS RAGE When Deie Entered)

